Keywords: eggplant, interspecific hybridization, line, selection, quantitative traits, genetic alignment


Abstract. The aim – to improve the gene pool of the cultured form of eggplant (Solanum melongena L.) due to interspecific hybridization with the species Solanum aethiopicum L., analysis of lines of interspecific origin based on a complex of quantitative economic and valuable traits. Methods: general scientific, measuring, weighing and weighting, variational statistics. Results. According to the results of the analysis of the investigated quantitative traits of eggplant, the peculiarities of their manifestation in experimental selections were established depending on the level of backcross crossings with the standard variety Almaz. In particular, a steady trend was noted in increasing the level of manifestation of such traits as "Fruit shape index" (Xmed = 1.2...1.8), "Average fruit weight" (Xmed = 173.8...291.7 g), "Productivity of one plant" (Xmed = 702.3...1111.7 g/plant). At the same time, in all experimental selections, the phenological phase of plant development, which determines the duration of the period from the appearance of mass seedlings to the technical ripeness of fruits, was shorter than in the standard varieties (102–105 days against 114–115 days in the standard varieties). Conclusions. In conclusion, the selection [((F5 (Pavlotas-20 / s. Almaz (original 403 g)) / s. Almaz) / s. Almaz] was distinguished by the best indicators both in terms of the phenological phase of plant development and in terms of quantitative indicators that determine yield structure. This selection was transferred to the genetic bank of vegetable plants as a promising line of eggplant of interspecies origin for breeding research with the following economic and valuable characteristics: early ripening, with a period from the appearance of mass seedlings to the onset of technical ripeness of fruits of 100–105 days; productivity of one plant at the level of 1100–1400 g/plant, which is higher than the Almaz standard variety by 28–56%; fruit length 12–14 cm, diameter 6–7 cm, weight 290–340 g. The shape of the fruit is cylindrical, light purple in color, pulp is dense without bitterness.


Bletsos, F., Roupakias, D., Tsaktsira, M., Scaltsoyjannes, A. (2004). Production and characterization of interspecific hybrids between three eggplant (Solanum melongena L.) cultivars and Solanum macrocarpon L. Scientia Horticulturae. 1:11–21. [in English].

Bondarenko, G. L. and Yakovenko, K. I. (eds.) (2001). Metodyka doslidnoi spravy v ovochivnytstvi i bashtannytstvi [Methodology of experimental research in vegetable and melon growing]. Kharkiv: Osnova, 369 p. [in Ukrainian].

Bukharova, A. R. and Bukharov, A. F. (2008). Otdalennaya gibridizatsiya ovoschnyih paslYonovyih kultur [Remote hybridization of nightshade vegetable crops]. Michurinsk: Publishing House of the Michurinsky State Agrarian University, 274 p. [in Rassian].

Bukharova, A. R. and Bukharov, A. F. (2009). Obschnost i spetsifika introgressivnyih protsessov v rodovyih kompleksah tomata, pertsa, baklazhana [Commonality and Specificity of Introgressive Processes in Generic Complexes of Tomato, Pepper, and Eggplant]. Bulletin of the Altai State Agrarian University. 6:5–9. [in Rassian].

Burlaka, O. M. and Sorochynskyi B. V. (2010). Biofortyfikatsiia silskohospodarskykh roslyn [Biofortification of agricultural plants]. Biotechnology. 3(5):31–42. [in Ukrainian].

Buy, Yu. and Lindhout, P. (2012). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of botany. 8:1085–1094. [in English].

Dias, M., Conceição, I., Abrantes, I., Cunha M. (2012). Solanum sisymbriifolium – a new approach for the management of plant-parasitic nematodes. European Journal of Plant Pathology. 133(1):171– 179. [in English].

Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul'tatov issledovaniy) [Methods of field experience (with the basics of statistical processing of research results)]. Moscow: Agropromizdat, 350 p. [in Rassian].

Dunal, M. S. and Datta, B. K. (2018). Reproductive biology of Solanum ovigerum. Bioscience Discovery. 9(1):155–161. [in English].

Chao, F., Yang Zhi Rong, Liu Du Chen, Liu Xiao Jun (2010). Analysis of eggplant linkage map using SRAP molecular markers. Southwest China Journal of Agricultural Sciences. 23(5):1591–594. [in English].

Grati, M. I. and Grati, V. G. (2005). Perspektivyi ispolzovaniya otdalennoy gibridizatsii v selektsii tomata [Perspectives for the use of distant hybridization in tomato breeding]. Vegetable and melon growing. 51:139–151. [in Rassian].

Gorova, T. K. and Yakovenko, K. I. (eds.) (2001). Suchasni metody selektsii ovochevykh i bashtannykh kultur [Modern methods of beeding of vegetable and melon crops]. Kharkiv: SE Kharkiv Printing House No. 2, 644 p. [in Ukrainian].

Kenya, B. U. and Zarasco, J. F. (1995). Crossability and cytological studies in Solanum macrocarpon and Solanum linnaeum. Euphytica. 86(1):18. [in English].

Kravchenko, V. A. (2010). Stvorennia netradytsiinykh henotypiv pomidora [Creation of non-traditional tomato genotypes]. Autochthonous and introduced plants. 6:77–80. [in Ukrainian].

Lebeau, A., Daunay, M. C., Frary, A., Palloix, A., Wang, J. F., Dintinger, J., Chiroleu, F., Wicker, E., & Prior, P. (2011). Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology. 101(1):154–165. [in English].

Montvid, P. Y. (2011). Vikova zalezhnist perebihu meiozu u mizhvydovoho hibryda F1 Solanum linnaeum L. × Solanum incanum L. [Meiosis passing age dependence in Solanum linnaeum L. × Solanum incanum L. F1 interspecific hybrid]. Cytology and genetics. 45(4):23–28. [in Ukrainian].

Sękara, A., Cebula, S., Kunicki, E. (2007). Cultivated eggplants – origin, breeding objectives and genetic resources, a review. Folia horticulture. 19(1):97–114. [in English].

Rick, C. M. (1963). Differential zygotic lethality in a tomato species hybrid. Genetics. 48:1497–1507. [in English].

Rick, C. M. and Butler, L. (1956). Cytogenetics of the tomato. Advances in genetics. 3:267–382. [in English].

Zhuchenko, A. A. (2001). Adaptivnaya sistema selektsii rasteniy [Adaptive Plant Breeding System]. M: LLC “Publishing house Agrorus”. T I, 780 p. [in Rassian].

Zhuchenko, A. A. (2009). Biologizatsiya i ekologizatsiya intensifikatsionnyih protsessov v selskom hozyaystve [Biologization and ecologization of intensification processes in agriculture]. Bulletin of the Oryol State Agrarian University. 3:8–12. [in Rassian].

Zhuchenko, A. A., Balashova, N. N., Korol, A. B. (1988). Ekologo-geneticheskie osnovyi selektsii tomato [Ecological and genetic bases of tomato breeding]. Chisinau: Shtiintsa, 450 p. [in Rassian].

How to Cite
Kondratenko, S., Samovol, O., Sergienko, O., Marusiak, A., & Ilyinova, Y. (2023). ANALYSIS OF INCROSSED PROGENIES OF EGGPLANT OF INTERSPECIFIC ORIGIN ACCORDING TO THE COMPLEX OF ECONOMICLY VALUABLE TRAITS. Vegetable and Melon Growing, (72), 15-22.