Keywords: resistance, selective media, Solanum lycopersicum, interspecific hybridization, grafting


The aim – to investigate the influence of selective media in vitro on the viability and indicators of plant growth and development of regenerated plants of tomato interspecies hybrids F1 and to identify promising genotypes for use as rootstocks. Methods: General scientific, measuring, laboratory, statistical. Results. The effect of adding 50% culture fluid filtrate (CLF) of Alternaria solani (necrotrophic pathogen), 10 g/l of NaCl (salinity) and 0.1 g/l of hydroxyproline (drought) to nutrient media as selective factors, as well as a 1.5-fold increase in the content of the main nutrients according to the prescription of MS (medium II) on the viability and development of the vegetative mass and root system of test-tube plants of 8 interspecies hybrids of tomato F1 was determined. CLF of A. solani, NaCl and hydroxyproline caused a significant decrease in the viability of regenerating plants of the studied samples and inhibition of their growth and development. The most pronounced selective effect was exerted by hydroxyproline. Medium II did not significantly affect the studied parameters of plants, therefore it cannot be used for evaluation and selection of samples. Conclusions. The used approach makes it possible to evaluate and select in vitro strong tomato rootstocks with a developed root system, resistant to a complex of biotic and abiotic factors, among interspecific F1 hybrids. According to the complex of traits in isolated culture F1 hybrids BC-88 and BC-91 – T-5 / S. habrochaites, BC96 – K-7311 / S. habrochaites and BC-156 – S. pimpinellifolium / S. lycopersicum var. cerasiforme, which are promising for use as tomato rootstocks, were selected.


Abdel-Raheem, A. T., Ragab, A. R., Kasem, Z. A., Omar, F.D., Samera, A.M. (2007) In vitro selection for tomato plants for drought tolerance via callus culture under polyethylene glycol (PEG) and mannitol treatments. African Crop Science Conference Proceedings. P. 2027 – 2032.

Abdelmageed, A.H.A., Gruda, N. (2009). Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Europ.J.Hort.Sci. V. 74 (1). P. 16–20. [in English].

Agarwal, S., Rao, A.V. (2000). Tomato Lycopene and Its Role in Human Health and Chronic Diseases. Canadian Medical Association Journal. V. 163. P. 739-744. PMID: 11022591 [in English].

Altunlu, H., Gul, A. (2012). Increasing drought tolerance of tomato plants by grafting. / Fifth Balkan Symposium on Vegetables and Potatoes. Acta Hortic. V. 960. P. 183–190. DOI: [in English].

Bhatt, R.M., Upreti, K.K., Divya, M.H., Bhat, S., Pavithra, C.B., Sadashiva, A.T. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci. Hort. V. 182. P. 8–17. [in English].

Biswas, A., Islam., Md. R., Rashed, M.R.U., Zeba, N. (2017). In Vitro Selection of Calli for Salt Tolerance in Tomato (Solanum lycopersicum L.). International Journal of Environment Agriculture and Biotechnology. V. 2(6), P. 2855 – 2872. DOI: [in English].

Carlson P. S. (1973). Methionine sulfoximineresistant mutants of tobacco. Science. V. 180. P. 1366–1368. [in English].

Cíntora-Martínez, E.A., Lobato-Ortíz, R., GarcíaZavala, J.J., Hernández-Rodríguez, M., RodríguezGuzmány, E., Cruz-Izquierdo, S. (2021) Generaciones avanzadas de una cruza de Solanum lycopersicum× S. habrochaites como portainjertos de tomate. Revista Fitotecnia Mexicana. V. 44. P. 15-24. DOI: [in Spanish].

Cohen, S., Naor, A. (2002). The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell Environ. V. 25. P. 17–28. DOI: [in English].

Colla, G., Rouphael, Y., Jawad, R., Kumar, P., Rea, E., Cardarelli, M. (2013). The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hort. V. 164. P. 380–391. DOI: [in English].

Colla, G., Rouphael, Y., Leonardi, C., Bie, Z.. (2010). Role of grafting in vegetable crops grown under saline conditions. Sci. Hort. V. 127. P. 147– 155. DOI: [in English].

Dospekhov, B. A. (1985). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul'tatov issledovaniy)[ Methods of field experience (with the basics of statistical processing of research results)] Moscow: Agropromizdat. 350 p. [in Russian].

DSTU 7645:2014 Kul’tury ovochevi. Metod vehetatyvnoho rozmnozhennya in vitro [Vegetable crops. Method of vegetative propagation in vitro] [Chynnyi vid 2015–01–01]. Kyiv: Derzhspozhyvstandart Ukrayiny, 2014. 21 р. [in Ukrainian].

Estan M.T., Villalta I., Bolarin M.C., Carbonell E.A., Asins M.J. (2009). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theor. Appl. Genet. V. 118. P. 305– 312. DOI: [in English].

FAO, 2020. Statistical Database. Food and agricultural organization of the united nations. Available at. [in English].

Flores, B.F., Sanchez-Bel, P., Estan, M.T., Martinez-Rodriguez, M.M., Moyano, E., Morales, B., Campos, J.F., Garcia-Abellan, J.O., Egea, M.I., Fernandez-Garcia, N., Romojaro, F., Bolarin, M.C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae. V. 126. P. 211–217 [in English].

Finkers, R., Bai, Y., Berg, P., Berloo, R. (2008). Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica. V. 159. P. 83–92. DOI: [in English].

Goto, R., Miguel, J., Marsal.,J. I., Gorbe, E., Calatayud, A. (2013). Effect of different rootstocks on growth, chlorophyll a fluorescence and mineral composition of two grafted scions of tomato. J. Plant Nutr. V. 36. P. 825–835. DOI: [in English].

Ivchenko, T., Miroshnichenko, T., Mozgovska, A., Bashtan, N. (2021). Modeling of Tomato Genotypes Stress-Tolerance by Comprehensive Assessment on Selective Media In Vitro. Biol. Life Sci. Forum. V. 4. P. 1 – 12. DOI: [in English].

Ivchenko, T.V, Miroshnichenko, V. Р., Samovol, O. Р.( 2010). Metodychni rekomendatsiyi z oderzhannya i rozmnozhennya v kul’turi in vitro roslyn mizhvydovykh hibrydiv tomata [Methodical recommendations for obtaining and breeding in vitro plants of interspecies hybrids of tomato]; Instytut ovochivnytstva i bashtannytstva, Merefa, 9р. [in Ukrainian].

Kabaş, A., Celik, I. (2021) Development of biotic stress resistant F1 interspecific hybrid rootstock derived from Solanum lycopersicum and Solanum habrochaites. Acta Sci. Pol. Hortorum Cultus. V. 20 (5). P. 107–117. DOI: [in English].

Khah, E.M., Kakava, E., Mavromatis, A., Chachalis, D., Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hort. V. 8. P. 3–7. DOI: [in English].

King, S.R., Davis, A.R., Zhang, X., Crosby, K. (2010) Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hortic. V. 127. P. 106–111. [in English].

Kovbasenko, V. M. (1997). Biotekhnolohichni metody oderzhannya vykhidnykh form pomidoriv u selektsiyi na stiykistʹ do khvorob. [Biotechnological methods of obtaining initial forms of tomatoes in selection for disease resistance]. Ovochivnytstvo i bashtannytstvo. V. 42. P. 49 – 52. [in Ukrainian].

Kumar, P., Y. Rouphael, M. Cardarelli, and Colla, G. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. V. 8. P. 1130. DOI: [in English].

Lopez-Perez, J.A., M. Le Strange, I. Kaloshian, and A.T. Ploeg. (2006). Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection. V. 25. P. 382–388. DOI: [in English].

Louws, F.J., Rivard, C.L., Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hort. V. 127. P. 127–146. DOI: [in English].

Miroshnichenko, T. M., Ivchenko, T. V., Chernenko, V. L. (2014) Otsinka stiykosti zrazkiv tomata proty fuzarioznoho vyanennya v kulturi in vitro. [In vitro assessment of resistance of tomato samples against Fusarium wilt]. Ovochivnytstvo i bashtannytstvo. V. 60. P. 193 – 201. [in Ukrainian].

Murashige, T.A. (1962). Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol.plant. V. 15. P. 473–497 [in English].

Peralta, I.E., Knapp, S., Spooner, D.M. (2005). New species of wild tomatoes (Solanum Section Lycopersicon: Solanaceae) from Northern Peru. Syst. Bot. V. 30. P. 424–434. DOI: [in English].

Rivard, C., Louws, F. (2006). Grafting for disease resistance in heirloom tomatoes. North Carolina Coop. Ext. Serv. Bul. 8 p. [in English].

Rivero, R.M., Ruiz, J.M., Romero, L. (2003). Can grafting in tomato plants strengthen resistance to thermal stress? J. Sci. Food Agr. V. 83. P. 1315– 1319. DOI: [in English].

Sacks, E.J., Clair, D.A.S. (1998). Variation among seven genotypes of L. esculentum and 36 accessions of L. hirsutum for interspecific crossability. Euphytica. V. 101. P. 185–191. DOI: [in English].

Santa-Cruz, A., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Romero-Aranda, R., Bolarin, M.C. (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. V. 162. P. 825–831. DOI: [in English].

Švabova, L., Lebeda, A. (2005). In vitro selection for improved plant resistance to toxin-producing pathogens. J. Phytopathology V. 153. P. 52 – 64. [in English].

Sifres, A., Blanca, J., Nuez, F. (2010).Pattern of genetic variability of Solanum habrochaites in its natural area of distribution. Genet. Resour. Crop Evol. V. 58. P. 347–360. DOI: [in English].

Singh, H., Kumar, P. (2017). Tomato Grafting: A Global Perspective. ICAR –HORTSCIENCE. V. 52 (10). P. 1328–1336. DOI: [in English]

Suchov, D.H., Gunter, C.С., Louws, F.J. (2017). Comparative Analysis of Root System Morphology in Tomato Rootstock. Hort. Technology. V. 27 (3). P. 319-324. DOI: [in English].

Turhan, A., Ozmen, N., Serbeci, M.S., Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Hort. Sci. (Prague). V. 38. P. 142–149. DOI: [in English].

Vanlay, M.; Samnang, S.; Jung, H.-J.; Choe, P.; Kang, K.K.; Nou, I.-S. (2022). Interspecific and Intraspecific Hybrid Rootstocks to Improve Horticultural Traits and Soil-Borne Disease Resistance in Tomato. Genes. V. 13. P. 1468. DOI: [in English].

Venema, J.H., Dijk, B.E., Bax, J.M., Hasselt, P.R, Elzenga, J.T.M. (2008). Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal temperature tolerance. Environ. Expt. Bot. V. 63. P. 359–367. DOI: [in English].

Villalta, I., Bernet, G. P., Carbonell, E. A. Asins,•M. J. (2007). Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines. Theor. Appl. Genet. V. 114. P. 1001–1017. DOI: [in English].

Zaki, H. E. M., Yokoi, S. (2016). A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnology. V. 33. P. 361–372. DOI: [in English].

How to Cite
Ivchenko, T., Miroshnichenko, T., Bashtan, N., MozgovskaА., Krutko, R., & Shabetya, O. (2023). IN VITRO SELECTION OF INTERSPECIFIC F1 TOMATO HYBRIDS SUITABLE FOR USE AS ROOTSTOCKS. Vegetable and Melon Growing, (72), 6-14.