EFFECT OF MYCOHELP BIOFUNGICIDE ON SOWING QUALITIES OF VEGETABLE PLANT SEEDS

  • O. V. Kuts Institute of Vegetable and Melons growing of National Academy of Agricultural Sciences of Ukraine https://orcid.org/0000-0003-2053-8142
  • Ye. O. Dukhin Institute of Vegetable and Melons growing of National Academy of Agricultural Sciences of Ukraine https://orcid.org/0000-0003-4270-4180
  • Yu. A. Rudym Institute of Vegetable and Melons growing of National Academy of Agricultural Sciences of Ukraine https://orcid.org/0000-0003-3413-1175
  • N. S. Yarokhno Institute of Vegetable and Melons growing of National Academy of Agricultural Sciences of Ukraine
  • M. O. Shapko Institute of Vegetable and Melons growing of National Academy of Agricultural Sciences of Ukraine https://orcid.org/0000-0001-8665-0562
  • S. H. Korsun Limited Liability Company «BTU-center»
  • I. I. Bilivets Limited Liability Company «BTU-center»
  • N. M. Voloshchuk Limited Liability Company «BTU-center»
Keywords: biofungicide, vegetable plants, germination energy, laboratory germination

Abstract

Goal. Investigate the effect of the biological fungicide Mycohelp on the sowing qualities of seeds of major vegetable plants. Methods. Laboratory tests. Results. The results of the effect of different doses of Mycohelp biofungicide (complex of saprophytic fungi-antagonists of the genus Trichoderma, live cells of Bacillus subtilis, Azotobacter, Enterobacter, Enterococcus, biologically active products of microorganismsproducers) on sowing qualities of seed crops sweet, white cabbage, onions). Treatment of cucumber, tomato and onion seeds with a dosage of 20–100 ml / kg does not cause a negative effect on cucumber seedlings (germination energy ranged from 80–88%, laboratory germination - 84–90%) and causes a stimulating effect on the length of cucumber seedlings (1.85–2.24 cm). The use of Mycohelp with a dosage of 20-40 ml / kg increases the germination energy of sweet pepper seeds by 9.5–17.6%. For sweet pepper seeds and white cabbage phytotoxicity is observed already at the dosage of 100 ml / kg: for sweet pepper seeds there is a decrease in germination energy by 29.7%, but laboratory germination decreased insignificantly, for white cabbage seeds - decrease in germination energy and laboratory germination from 99% on control to the level of 88%. At a dose of 200 ml / kg, complete inhibition of germination of white cabbage seeds is indicated (germination energy and laboratory germination was 2%). Conclusions. Use for processing of seeds of cucumber, tomato and onion of biofungicide Mikohelp can be carried out with a dosage from 20 to 100 ml / kg of seeds, for sweet pepper and white cabbage - with a dosage of 29-40 ml / kg of seeds that does not cause negative influence on germination energy. and laboratory germination of seeds of these vegetables. A significant increase in the germination energy of onion seeds is provided by Mycohelp treatment with a dosage of 20-100 ml / kg (by 31.7–46.3% relative to the absolute values in the control variant). The use of Mykohelp dosage of 200 ml / kg for seed treatment, and 100 ml / kg for sweet pepper and white cabbage causes a significant decrease in germination energy and laboratory germination by 8.2–98.0% relative to control.

References

Alfiky, A., Weisskopf, L. (2021). Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. J. Fungi. 7(1). Р. 61. https://doi.org/10.3390/jof7010061 [in English].

Аlvarez-García S., Manga-Robles, A., Encina, A., Gutiérrez, S., Casquero, P. (2022). Novel culture chamber to evaluate in vitro plant-microbe volatile interactions: Effects of Trichoderma harzianum volatiles on wheat plantlets. Plant Science. Volume 320. Article number 111286. doi: https://doi.org/10.1016/j.plantsci.2022.111286 [in English].

Atreya, K., Sitaula, B.K., Bajracharya, R.M. (2012). Pesticide use in agriculture: The philosophy, complexities and opportunities. Sci. Res. Essays. 7. Р. 2168–2173. [in English].

Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149. Р. 1579–1592. [in English].

Doni, F.; Isahak, A.; Zain, C.R.C.M.; Ariffin, S.M.; Mohamad, W.N.W.; Yusoff, W.M.W. (2014). Formulation of Trichoderma sp. SL2 inoculants using different carriers for soil treatment in rice seedling growth. Springerplus. 3. Р. 532. [in English].

Dospekhov, B. A. (1985). Metodika polevoho opyta. [Method of research work]. Moscow: Ahropromyzdat. [in Russian].

DSTU 4138: 2002. Seeds of agricultural crops. Methods of quality determination. yiv: Kyiv Derzhspozhyvstandart Ukrainy, 2003. 173 p.

DSTU 7160: 2010. Seeds of vegetable, melon, fodder and spicy-aromatic crops. Varietal and sowing qualities. Specifications. Kyiv: Derzhspozhyvstandart Ukrainy, 2010. 27 p.

El-Katatny, M.H.; Idres, M.M. (2014). Effects of single and combined inoculations with Azospirillum brasilense and Trichoderma harzianum on seedling growth or yield parameters of wheat (Triticum vulgaris L., Giza 168) and corn (Zea mays L., hybrid 310). J. Plant Nutr. 37. Р. 1913–1936. [in English].

Halifu, S.; Deng, X.; Song, X.; Song, R. (2019). Effects of Two Trichoderma Strains on Plant Growth, Rhizosphere Soil Nutrients, and Fungal Community of Pinus sylvestris var. mongolica Annual Seedlings. Forests. 10. Р. 758. [in English].

Haque, M.M.; Ilias, G.N.M.; Molla, A.H. (2012). Impact of Trichoderma-enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). Agriculturists. 10. Р. 109–119. [in English].

Hermosa, R., Viterbo, A., Chet, I., Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 158. Р. 17–25. [in English].

Idowu, O.O.; Olawole, O.I.; Idumu, O.O.; Salami, A.O. (2016). Bio-control effect of Trichoderma asperellum (Samuels) Lieckf. And Glomus intraradices Schenk on okra seedlings infected with Pythium aphanidermatum (Edson) Fitzp and Erwinia carotovora (Jones). J. Exp. Agric. Int. Р. 1–12. [in English].

Kumar, S. (2013). Trichoderma: A biological weapon for managing plant diseases and promoting sustainability. Int. J. Agric. Sci. Med. Vet. 1. Р. 106–121. [in English].

Köhl, J., Kolnaar, R., Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 10. 845 р. [in English].

Lace, B.; Genre, A.; Woo, S.; Faccio, A.; Lorito, M.; Bonfante, P. (2015). Gate crashing arbuscular mycorrhizas: In vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride. Environ. Microbiol. Rep. 7. Р. 64–77. [in English].

Li, R.-X.; Cai, F.; Pang, G.; Shen, Q.-R.; Li, R.; Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE. 10. e0130081. [in English].

López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. (2015). Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196. Р. 109–123. [in English].

Lorito, M.; Woo, S.L.; Harman, G.E.; Monte, E. (2010). Translational research on Trichoderma: From’omics to the field. Ann. Rev. Phytopathol. 48. Р. 395–417. [in English].

Matson, M.E.H., Small, I.M., Fry, W.E., Judelson, H.S. (2015). Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology. 105. Р. 1594–1600. [in English].

Meszka, B., Broniarek-Niemiec, A., Bielenin, A. (2008). The status of dodine resistance of Venturia inaequalis populations in Poland. Phytopathol. Pol. 47. Р. 57–61. [in English].

Naznin, A.; Hossain, M.M.; Ara, K.A.; Hoque, A.; Islam, M. (2015). Influence of organic amendments and bio-control agent on yield and quality of tuberose. J. Hort. 2. Р. 1–8. [in English].

Omomowo, O.I.; Babalola, O.O. (2019). Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity. Microorganisms. 7. Р. 481. [in English].

Panth, M., Hassler, S.C., Baysal-Gurel, F. (2020). Methods for Management of Soilborne Diseases in Crop Production. Agriculture. 10. Р. 16. [in English].

Pidoplichko, N. M. (1953) Hrybna flora hrubykh kormiv [Mushroom flora of roughage]. Kyiv: Publishing House of the Academy of Sciences of the Ukrainian SSR. 488 р. [in Ukrainian].

Rabeendran, N.; Moot, D.J.; Jones, E.E.; Stewart, A. (2000). Inconsistent growth promotion of cabbage and lettuce from Trichoderma isolates. New Zeal. Plant Prot. 53. Р. 143–146. [in English].

Raju, N.S., Niranjana, S.R., Shetty, H.S. (2003). Effect of Pseudomonas fluoriescens and Trichoderma harzianum on head moulds and seed qualitites of Sorghum. Crop Improv. (India). 30. Р. 6–12. [in English].

Rozenfeld, V.V., Vashchenko L.M. (2005). Fitopatohenni vlastyvosti shtamiv, vydilenykh iz nasinnya sosny. Zhytomyr: Polissya [Phytopathogenic properties of strains isolated from pine seeds. Zhytomyr: Polissya] Collection of articles of the participants of the International scientific conference "Phytopathogenic bacteria. Phytoncide. Allelopathy ”(Kyiv, October 4-6, 2005). - Zhytomyr: “State Agroecological University, 2005. - P. 122-125. [in Ukrainian].

Sajeesh, P.K. Cu-Chi-Tri: A Triple Combination for the Management of Late Blight Disease of Potato (Solanum tuberosum L.). Ph.D. Thesis, GB Pant University of Agriculture and Technology, Pantnagar, India, 2015. [in English].

Slabaugh, W.R., Grove, M.D. (1982). Postharvest diseases of bananas and their control. Plant Dis. 66. Р. 746–750. [in English].

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., Araniti, F., Sharma, A. (2020). Trichoderma: The «Secrets» of a Multitalented Biocontrol Agent. Plants. 9. Р. 762. doi: https://doi.org/10.3390/plants9060762 [in English].

Spalding, D.H. (1982). Resistance of mango pathogens to fungicides used to control postharvest diseases. Plant Dis. 66. Р. 1185–1186. [in English].

Tucci, M.; Ruocco, M.; de Masi, L.; de Palma, M.; Lorito, M. (2011). The beneficial effect of Trichoderma spp. On tomato is modulated by the plant genotype. Mol. Plant Pathol. 12. Р. 341–354. [in English].

Van Wees, S.C.M., der Ent, S., Pieterse, C.M.J. (2008). Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11. Р. 443–448. [in English].

Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. (2008). Trichoderma – plant – pathogen interactions. Soil Biol. Biochem. 40. Р. 1–10. [in English].

Wilson, P.S.; Ketola, E.O.; Ahvenniemi, P.M.; Lehtonen, M.J.; Valkonen, J.P.T. (2008). Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: Effects on stem canker, black scurf, and progeny tubers of potato. Plant Pathol. 57. Р. 152–161. [in English].

Yakovenko, K. I. (Eds). (2001). Metodyka doslidnoyi spravy v ovochivnytstvi I bashtannytstvi [Methodology of experimental work in vegetable and melon growing]. Kharkiv: Osnova. 369 p. [in Ukrainian].

Yedidia, I.; Srivastva, A.K.; Kapulnik, Y.; Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 235. Р. 235–242. [in English].

Zhang, J.; Chen, G.-Y.; Li, X.-Z.; Hu, M.; Wang, B.-Y.; Ruan, B.-H.; Zhou, H.; Zhao, L.-X.; Zhou, J.; Ding, Z.-T. et al. (2017). Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res. 31. Р. 2745–2752. [in English].

Zhao, K.; Penttinen, P.; Zhang, X.; Ao, X.; Liu, M.; Yu, X.; Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol. Res. 169. Р. 76–82. [in English].

Published
2022-07-25
How to Cite
Kuts, O., Dukhin, Y., Rudym, Y., Yarokhno, N., Shapko, M., Korsun, S., Bilivets, I., & Voloshchuk, N. (2022). EFFECT OF MYCOHELP BIOFUNGICIDE ON SOWING QUALITIES OF VEGETABLE PLANT SEEDS. Vegetable and Melon Growing, (71), 67-75. https://doi.org/10.32717/0131-0062-2022-71-67-75

Most read articles by the same author(s)