• L. M. Pusik Kharkiv Petro Vasylenko National Technical University of Agriculture
  • V. K. Pusik Kharkiv Petro Vasylenko National Technical University of Agriculture
  • Y. А. Kryshtop Kharkiv Petro Vasylenko National Technical University of Agriculture
  • V. А. Bondarenkо Kharkiv Petro Vasylenko National Technical University of Agriculture
Keywords: biological preparations, bacterial and fungal antagonists, strain, microorganisms


The purpose of the article. To analyze the current state of use of biological products for post-harvest processing of fruits and vegetables in order to reduce losses during storage. Results. The analysis of modern domestic and foreign scientific and patent literature shows that the main advantages of biologicals are that their use solves the problem of resistance of phytopathogenic microorganisms to chemicals, increases crop quality and reduces fertilizer consumption. Biologicals improve the field germination of seeds, morphobiological characteristics of seedlings during germination, leaf formation and the intensity of photosynthesis during seed development and maturation. Biological drugs include environmentally friendly drugs (substances produced by bacteria-antagonists do not contaminate the soil and crops) and have a specific effect (high efficiency against certain types of phytopathogenic microorganisms). Conclusion. Biologicals based on bacteria with different multifunctional action are characterized by high efficiency in the regulation of phytopathogenic microbiota both in agrocenoses and during storage, which helps to reduce the level of biological contamination of agroecosystems, potential bioecological risks in agroecosystems and improve crop quality. In many countries around the world, widespread research aimed at finding highly active strains of microorganisms to create biological preparations based on them. The use of such biologicals increases productivity, prolongs shelf life and delays the defeat of products by microbiological diseases. It is important to reduce fruit losses not only during refrigerated storage, but also during the pre-harvest period. Today, the problem of reducing fruit loss in the pre-harvest period is solved with the use of appropriate biological products. Methods of storing fruits and vegetables using biological films are still poorly understood. Compared to others, these methods are less cost-effective and more environmentally friendly.


Alegre, I., Viñas, I., Usall, J., Teixidó, N., Figge, M.J., Abadias, M. (2013). Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiology. Vol. 34, pp. 390–399. Retrieved from: https://doi:10.1016/ [in English].

Al-Mughrab, K.I. (2010). Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonas fluorescens and Enterobacter cloacae. Biological Control. Vol. 53, № 3, pp. 280–284. Retrieved from: https://doi:10.1016/j.biocontrol.2010.01.010 [in English].

Aloshin, V.N., Kupin, G.A., Pershakova, T.V., Kabalina, D.V. (2017). Perspektivy primeneniya biopreparatov pri khranenii fruktov. [Prospects for the use of biological products in the storage of fruits]. Sbornik materialov kongressa «Nauka, pitaniye i zdorovye». Minsk, 8–9 iyunya, pp. 452– 459. Retrieved from: https://doi10.30679/2587-9847-2018-14-184-189 [In Russian].

Barbosa, A.A. T., Silva, H.G. de Araújo, Matos, P.N., Carnelossi, M.A.G., Almeida de Castro, A. (2013). Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. International. Journal of Food Microbiology. Vol. 164, № 2–3, pp. 135–140 [in English].

Cavaglieri, L., Orlando, J., Rodriguez, M.I., Chulze, S., Etcheverry, M. (2005). Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology. Vol. 156, № 5–6, pp. 748–754. Retrieved from: https://doi:10.1016/j.resmic.2005.03.001 [in English].

Chen, X., Li, J., Zhang, L., Xu, X., Wang, A., Yang, Y. (2012). Control of postharvest radish decay using a Cryptococcus albidus yeast coating formulation. Crop Protection. Vol. 41, pp. 88–95. Retrieved from: [in English].

Eshel, D., Regev, R., Orenstein, J., Droby, S., Gan-Mor, S. (2009). Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of Black Root Rot of carrot. Postharvest Biology and Technology. Vol. 54, № 1. 48–52. Retrieved from: [in English].

Estevez de Jensen, C., Percich, J.A., Graham, P.H. (2002). Integrated managemen tstrategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Research. Vol. 74, № 2–3, pp. 107–115 [in English]

Fan, H., Ru, J., Zhang, Y., Wang, Q., Li, Y. (2017). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research. Vol. 199, pp. 89–97. Retrieved from: [in English].

Francesco, A.D., Milellab, F., Maria M., Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control. Vol. 114, pp. 144–149. Retrieved from: https://doi:10.1016/j.biocontrol.2017.08.010 [in English].

Garlic Post-Harvest Trial Results Crystal Stewart Cornell Cooperative Extension Eastern NY Commercial Horticulture Program 518.775.0018. Retrieved from:о [in English].

Ghaouth, A.E., Wilson, C., Wisniewski, M., Droby, S., Smilanick, J.L., Korsten, L. (2002). Biological control of postharvest diseases of fruits and vegetables. Applied Mycology and Biotechnology. Vol. 2, pp. 219–238. Retrieved from: [in English].

Ghorbanpour, M., Omidvari, M., AbbaszadehDahaji, P., Omidvar, R., Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control. Vol. 117, pp. 147–157. Retrieved from: [in English].

Grondona, J. (1997). Physiological and biochemical characterization of Trichodermaviride, a biological control agent against soil-borne fungal plant pathogens. Appl. and Environ. Microbiool. Vol. 63. № 8, 389–398. Retrieved from: https://doi:10.1128/AEM.63.8.3189-3198.1997 [in English].

Khedher, S.B., Kilani-Feki O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M., Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies. Vol. 338, № 12, pp. 784–792. Retrieved from: https://doi:10.1016/j.crvi.2015.09.005 [in English].

Koltunov, V.V., Boroday, V.V., & Danilova, T.V. (2012). Effektivnost biopreparatov Planriz, Gaupsin, Diazofit v zashchite ot fitopatogenov pri vyrashchivanii i khranenii ovoshchey. [The effectiveness of biological products Planriz, Gaupsin, Diazofit in protection against phytopathogens when growing and storing vegetables]. Kartofelevodstvo: sb. nauch. tr. Minsk, Vol. 20, 102–111 [in Russian].

Kravchenko, N.O., Kopylov, P., Holovach, O.V. & Dmytruk, O.M. (2014). Otsinka patohennosti hruntovoho hryba Trichodermaviride 505. [Assessment of the pathogenicity of the soil fungus Trichodermaviride 505]. Silskohospodarska mikrobiolohiya. Vyp. 20, 23–28 [in Ukrainian].

Leverentz, B., Conway, W.S., Camp M.J., Janisiewicz W.J., Abuladze, T., Yang, M., Saftner, R., Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology. Vol. 69, pp. 4519–4526. Retrieved from: https://doi:10.1128/AEM.69.8.4519-4526.2003 [in English].

Leverentz, B., Conway, W.S., Janisiewicz, W., Abadias, M., Kurtzman, C.P., Camp, M.J. (2006). Biocontrol of the food-borne pathogens Listeria monocytogenes and Salmonella enterica serovar Poona on fresh-cut apples with naturally occurring bacterial and yeast antagonists. Applied and Environmental Microbiology. Vol. 72, pp. 1135–1140. Retrieved from: https://doi:10.1128/aem.72.2.1135-1140.2006 [in English].

Leverentz, B., Janisiewicz, W.J., Conway, W.S., Saftner, R.A., Fuchs, Y., Sams, C.E., Camp, M.J. (2000). Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of ‘Gala’ apples. Postharvest: Biology and Technology. Vol. 21, № 1, pp. 87–94. Retrieved from: https://doi:10.1016/S0925-5214(00)00167-8 [in English].

Lukatkin, A.A., Ibrahimova, S.A., Revin, V.V. (2009). Doslidzhennya antifunhalnykh vlastyvostey pseudomonasaureofaciens 2006. Vesnyk, Saransk, № 6, 211–213 [in Ukrainian].

Luo, W., Chen, M., Chen, A., Dong, W., Hou, X., Pu, B. (2015). Isolation of lactic acid bacteria from pao cai, a Chinese traditional fermented vegetable, with inhibitory activity against Salmonella associated with fresh-cut apple, using a modelling study. Journal of Applied Microbiology. Vol. 118, pp. 998–1006. Retrieved from: https://doi:10.1111/jam.12741 [in English].

Mari, M., Guizzardi, M., Brunelli, M., Folchi, A. (1996) Postharvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection. Vol. 15, № 8, pp. 699–705 [in English].

Meireles, A, Giaouris, E., Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh- cut industry. Food Research International. Vol. 82, pp. 71–85. Retrieved from: [in English].

Narsaiah, K., Wilson, R. A., Gokul, K., Mandge, H.M., Jha, S.N., Bhadwal, S., Anurag, R. K., Malik, R.K., Vijb, S. (2015). Effect of bacteriocinincorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology. Vol. 100, pp. 212–218. Retrieved from: https://doi:10.1016/j.postharvbio.2014.10.003 [in English].

On, A., Wong, F., Ko, Q., Tweddell, R.J., Antounb, H., Avis, T.J. (2015). Antifungal effects of compost tea microorganisms on tomato pathogens. Biological Control. Vol. 80, pp. 63–69. Retrieved from: [in English].

Pat. 02140138 Rossiyskaya Federatsiya, MPK 6A01C. Sposob predposevnoy obrabotki semyan ovoshchnykh kultur i sposob polucheniya preparata dlya predposevnoy obrabotki semyan ovoshchnykh kultur [Method of pre-sowing treatment of vegetable seeds and a method of obtaining a preparation for pre-sowing treatment of vegetable seeds] / Chebotar, V.K., Bykova N.V., Temnova, O.V., Orlova, N.A. Khotyanovich, A.V.; zayavitel i patentoobladatel Zakrytoye aktsionernoye obshchestvo Selskokhozyaystvennoye selektsionnoproizvodstvennoye predpriyatiye «SORTSEMOVOSHCH». 98120341/13; zayavl. 13.11.1998; opubl. 27.10.1999 [In Russian].

Pat. 02259397, Rossiyskaya Federatsiya, MPK 7C12N, 7A01C, 7C12N. Sredstvo dlya zashchity zernovykh sel'skokhozyaystvennykh kul'tur, podsolnechnika, vinograda ot fitopatogennykh mikroorganizmov, ovoshchnykh kul'tur ot fitopatogennykh bakteriy [Means for the protection of winter crops, sunflower, grapes from phytopathogenic microorganisms, vegetable crops from phytopathogenic bacteria] / Khotyanovich, A.V., Temnova, O.V., Orlova, N.A., Bykova, N.V., Chebotar, V.K.; zayavitel i patentoobladatel Obshchestvo s ogranichennoy otvetstvennost'yu «Bisolbi-inter». № 2003110469/13; zayavl. 02.04.2003; opubl. 27.08.2005 [In Russian].

Pat. 20183 (U) Ukrayina, MPK A23V 4/00, A01F 25/00, C08B 37/00. Zastosuvannya vodnoho rozchynu khitozanu yak konservanta dlya obrobky produktiv kharchuvannya roslynnoho pokhodzhennya pered zberezhennyam [Use of watersoluble chitosan as a preservative in the processing of food products of plant origin before storage] / Kavyrshyn, O.P.; zayavnyk ta patentovlasnyk Fedorov, S.A. – № u200607684; Zayavl. 10.07.2006; opubl. 15.01.2007, Byul. № 1 [in Ukrainian].

Pat. CN104309903 (A), МПК B29C55/28, B29D7/01, B65D30/02, B65D65/02. C08K3/16, C08L23/06, C08L23/08, C08L3/04, C08L3/08. Preservative film for short-term storage of fruits and vegetables, preparation method of preservative film and prepared preservative bag / Shi Dixing; zayavl. 25.09.2014; opubl. 28.01.2015. [in English].

Pershakova, T.V., Lisovoy, V.V., Kupin, G.A., Panasenko, Ye.YU., Viktorova, Ye.P. (2016). Sposoby obespecheniya stabilnogo kachestva rastitelnogo syrya v protsesse khraneniya s primeneniyem biopreparatov. [Methods for ensuring the stable quality of plant raw materials during storage using biological products]. Politematicheskiy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Elektronnyy resurs]. № 03 (117) . Retrieved from: [In Russian].

Plaza, L., Altisent, R., Alegre, I., Viñas, I., Abadias, M. (2016). Changes in the quality and antioxidant properties of fresh-cut melon treated with the biopreservative culture Pseudomonas graminis CPA-7 during refrigerated storage. Postharvest Biology and Technology. Vol. 111, pp. 25–30. Retrieved from: [in English].

Punja, Z. K., Rodriguez, G., Tirajoh, A. (2016). Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Protection. Vol. 84, pp. 98–104. Retrieved from: http://doi:10.1016/j.cropro.2016.02.011 [in English].

Pusik, L., Pusik, V., Postnova, О., Safronska, I., Chervonyi, V., Mohutova, V., Kaluzhnij, А. (2020). Conservation of winter garlic, depending on the elements of the post-collection. Eastern-European Journal of Enterprise Technologies. Vol. 2, Issue 11(104), pp. 24–33: doi: 10.15587/1729- 4061.2020.200842 [in English].

Ramos, B., Miller, F.A. Brandão, T.R.S., Teixeira, P., Silva, C.L.M. (2013). Fresh fruits and vegetables– An overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies. Vol. 20, pp. 1–15. Retrieved from: https://doi:10.1016/j.ifset.2013.07.002 [in English].

Randazzo, C. L., Pitino, I., Scifò, G. O., Caggia, C. (2009). Biopreservation of minimally processed iceberg lettuces using a bacteriocin produced by Lactococcus lactis wild strain. Food Control. Vol. 20, pp. 756–763. Retrieved from: https://doi:10.1016/j.foodcont.2008.09.020 [in English].

Rao, S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., Grace, G.N., Chaya, M.K., Gopalakrishnan, C. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae. Vol. 218, pp. 56–62. Retrieved from: [in English].

Russo, P., Spano, G., Peña, N., de Chiara, M.L.V., Amodio, M.L., Colelli, M.L. (2015). Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Research International. Vol. 77, part 4, pp. 762–772. Retrieved from: [in English].

Saligkarias, I.D., Gravanis, F.T., Epton, H.A.S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: I. in vivo studies. Biological Control. Vol. 25, № 2, pp. 143–150. Retrieved from:П [in English].

Sempere, F., Santamarina, M.P. (2007). In vitro biocontrol analysis of Alternaria alternata (Fr.) Keissler under different environmental conditions. Mycopathology. Vol. 163, pp. 183–190. Retrieved from: https://doi:10.1007/s11046-007-0101-x [in English].

Sharma, N., Sharma, S. (2008). Control of foliar diseases of mustard by Bacillus from reclaimed soil. Microbiological Research. Vol. 163, № 4, pp. 408–413: https://doi:10.1016/j.micres.2006.06.011 [in English]

Shchipitsina, D.A. (2004). Issledovaniye protsessov dozarivaniya i khraneniya tomatov, obrabotannykh biopreparatami: dis. kand. tekhn. nauk: 05.18.07. [Research of the processes of ripening and storage of tomatoes treated with biological products]. Leningradskiy nauchnoissledovatelskiy institut selskogo khozyaystva. 151 p. [In Russian].

Shi, J., Sun, C. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology. Vol. 48, № 4, pp. 706– 714. Retrieved from: [in English].

Siroli, L., Patrignani, F., Serrazanetti, D.I., Gardini, F., Lanciotti, R. (2015). Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science & Technology. Vol. 46, № 2, pp. 302–310. Retrieved from: https://doi:10.1016/j.tifs.2015.04.014 [in English].

Siroli, L., Patrignani, F., Serrazanetti, D. I., Tabanelli, G., Montanari, C., Gardini, F., Lanciotti, R. (2015). Lactic acid bacteria and natural antimicrobials to improve the safety and shelflife of minimally processed sliced apples and lamb's lettuce. Food Microbiology. Vol. 47, pp. 74–84. Retrieved from: https://doi:10.1016/ [in English].

Spricigo, D. A., Bardina, C., Cortés, P., Llagostera, M. (2013). Use of a bacteriophage cocktail to control Salmonella in food and the food industry. International Journal of Food Microbiology. Vol. 165, pp. 169–174. Retrieved from: https://doi:10.1016/j.ijfoodmicro.2013.05.009 [in English].

Vinale, F., Sivasithamparamb, K., Glisalberti, E.L., Marra K., Woo S.L., & Lorito, M. (2008). Trichoderma- plant - pathogen interactions. Soil Biology and Biochemistry. V. 40, 1–9. Retrieved from: [in English].

Wilson, C.L., Wisniewski, M.E., Biles, C.L., McLaughlin, R., Chalutzt, E., Droby, S. (1991). Biological control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Protection. Vol. 10, № 3, pp. 172–177. Retrieved from: PII:0261-2194(91)900039 [in English].

Yanwen, Z., Shijun, W., Ping, Z., Jiazheng, Li Пат. CN101643567 (A), МПК C08L27/24. High-transparency physical antibacterial polyolefin fruit and vegetable storage and transportation preservative film / Yanwen Zhou, Shijun Wang, Ping Zhang, Jiazheng Li; zayavl. 07.09.200 9; opubl. 10.02.2010.

Zhao, Y., Tu, K., Shao, X., Jing, W., Su, Z. (2008). Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit . Postharvest Biology and Technology. Vol. 49, № 1, pp. 113–120 [in English].

Zong, Y., Liu, J., Li, B., Qin, G., Tian, S. (2010). Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biological Control. Vol. 54, № 3, pp. 316–321 [in English].

How to Cite
Pusik, L., Pusik, V., Kryshtop, Y., & BondarenkоV. (2021). CURRENT STATE OF APPLICATION OF BIOPREPARATIONS FOR POST-HARVEST PROCESSING OF FRUIT AND VEGETABLES. Vegetable and Melon Growing, (69), 120-130.