• A. O. Lymar Southern State Agricultural Experimental Station Institute of Water Problems and Land Reclamation National Academy Agricultural Sciences of Ukraine
  • O. O. Kholodnyak Southern State Agricultural Experimental Station Institute of Water Problems and Land Reclamation National Academy Agricultural Sciences of Ukraine
Keywords: transpiration; water holding capacity; photosynthesis; crop capacity


The aim of the research. To evaluate the effectiveness of stimulants in the cultivation of watermelon in the South of Ukraine. Methods. Field - crop determination, biometric accounting and measurement; laboratory – analysis of fruit quality, content of mineral nutrients in the soil; economic and mathematical – assessment of economic and bioenergy efficiency of the studied elements and technology in general; mathematical and statistical. Results. It was found that the maximum value of root mass – 337.75 g / plant was recorded in the joint cultivation of "Ecoline universal seed, start-up and growth". The bulk of the root system of watermelon (about 90%) is located in the horizon from 11 to 40 cm. The maximum impact on the photosynthetic potential had the norms of mineral fertilizers. The maximum values on average according to the experiment - 183.65 thousand m2 × day / ha are typical for the rate of fertilizers for a yield of 30 t / ha. The formed area of the leaf surface depending on the elements of the adaptive technology of watermelon cultivation is analyzed, it is concluded that it reaches the maximum values at the beginning of fruit ripening. Depending on the options, it amounted to 3.0–5.1 thousand m2 / ha. The highest yield of watermelon fruits (25.98 t / ha) was formed under the conditions of the following agronomic techniques: sowing of the variety Magician with fertilizers for 30 t / ha in the interaction of seed treatment with the drug "Ecoline Universal Seeds" in foliar treatment of plants "Ecoline Universal Start" and "Ecoline Universal Growth". The dynamics of watermelon yield depending on the hydrothermal coefficient is obtained and expressed as an equation. Conclusions. The use of all stimulants increased the net productivity of photosynthesis, which ultimately increased the yield of watermelon. The most effective was the use of the following agronomic techniques: sowing variety Magician with fertilizers for a yield of 30 t / ha in the interaction of seed treatment with the drug "Ecoline Universal Seeds" in foliar treatment of plants "Ecoline Universal Start" and "Ecoline Universal Growth".


Calvo, P., Nelson, L., Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383, 3–41. doi:10.1007/s11104-014-2131-8 [in English].

Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei P. et al. (2015). Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196, 15–27. doi:10.1016/j.scienta.2015.09.013 [in English].

Colla, G., Rouphael, Y. (2015). Biostimulants in horticulture. Sci. Hortic. 196, 1–2. doi:10.1016/j.scienta.2015.10.044 [in English].

De Pascale, S., Rouphael, Y., Colla, G. (2017). Plant biostimulants: innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 82, 277–285. doi:10.17660/eJHS.2017/82.6.2 [in English].

Dospekhov, B.A. (1985). Metodika polevoho opyta. [Method of research work] Moscow: Ahro-promyzdat [in Russian].

Du Jardin, P. (2012). The science of plant biostimulants-a bibliographic analysis. Contract 30-CE0455515/00-96, ad hoc study on bio-stimulants products. http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/final_report_bio_2012_en.pdf. [in English].

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. doi:10.1016/j.scienta.2015.09.021 [in English].

EU (2019). Regulation of the european parliament and of the council laying down rules on the making available on the market of EU fertilizing products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2019:170:TOC. [in English].

Gómez-Merino, F.C., Trejo-Téllez, L.I. (2015). Biostimulant activity of phosphate in horticulture. Science Hortic. 196, 82–90. doi:10.1016/j.scienta.2015.09.035 [in English].

Haplern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 130, 141–174. 10.1016/bs.agron.2014.10.001 [in English].

López-Bucio, J., Pelagio-Flores, R., Herrera-Estrella, A. (2015). Trichoderma as biostimulant: exploiting the multi level properties of a plant beneficial fungus. Sci. Hortic. 196, 109–123. doi:10.1016/j.scienta.2015.08.043 [in English].

Matsumiya, Y., Kubo, M. (2011). Soybean peptide: novel plant growth promoting peptide from soybean, in Soybean and Nutrition. Ed. El-Shemy H. (Rijeka: In Tech Europe Publisher), 215–230. doi:10.5772/19132 [in English].

Nardi, S., Pizzeghello, D., Schiavon, M., Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 73, 18–23. doi:10.1590/0103-9016-2015-0006 [in English].

Pichyangkura, R., Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Sci. Hortic. 196, 49–65. doi:10.1016/j.scienta.2015.09.031 [in English].

Rouphael, Y., Cardarelli, M., Bonini, P., Colla, G. (2017. a). Synergistic action of a microbialbased biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8, 131. doi:10.3389/fpls.2017.00131 [in English].

Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., De Pascale, S. (2017. b). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 29, 459–470. doi:10.1007/s10811-016-0937-x [in English].

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M. et al. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91–108. doi:10.1016/j.scienta.2015.09.002 [in English].

Rouphael, Y., Kyriacou, M.C., Colla, G. (2018. b). Vegetable grafting: a toolbox for securing yield stability under multiple stress conditions. Front. Plant Sci. 8, 2255. doi:10.3389/fpls.2017.02255 Savvas, D., Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Sci. Hortic. 196, 66–81. doi:10.1016/j.scienta.2015.09.010 [in English].

Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049. doi:10.3389/fpls.2016.02049 [in English].

How to Cite
Lymar, A., & Kholodnyak, O. (2021). EFFICIENCY OF THE USE OF GROWTH STIMULATORS IN THE GROWING OF WATERMELONS IN THE CONDITIONS OF THE SOUTH OF UKRAINE. Vegetable and Melon Growing, (69), 99-109. https://doi.org/10.32717/0131-0062-2021-69-99-109