Keywords: microorganisms, soil, fungi, micromycetes, plants, potatoes, pathogenic species, toxinforming species


The article presents the results of studies of the quantitative and specific composition of soil micromycetes in potato cultivation, depending on the intensity of irrigation in the north-east of Kazakhstan. During their growth in the soil, plants actively interact with its microflora, while microorganisms can have both positive and negative effects. Micromycetes produce mycotoxins that accumulate in food and, when ingested, cause liver damage and cancer. Some mycotoxins persist in the ground for a long time, and with improper agricultural processing, they accumulate in it, and are also removed from it to adjacent environments (surface reservoirs). As a result of the conducted studies, indicators of the quantitative and specific composition of fungi were obtained, antagonist fungi and toxin-forming species were identified. According to the results of the mycological analysis of soil samples, 39 isolates were isolated. During the study, the accumulation of toxin-forming species was found to be 43−54 % in all the studied variants. In the soil, when using irrigation, there are both pathogenic (18.1-50.0%) and saprophytic (50.0-81.9%) species of micromycetes, as well as toxin-forming species of fungi (46.2-55.6%) , which can cause different effects on the resistance of plants to potato diseases. The greatest number of pathogenic fungi, as well as toxin-forming fungi, was found when using limited watering of potatoes. The greatest number of pathogenic fungal species was observed in the variants with moderate irrigation −38.5 % (genera Fusarium − 30.8 %, Penicillium − 7.7 %), as well as in the variant with maximum irrigation – 50.0 % (genus Fusarium – 39.0%, from the genera Gliocladium and Aspergillus − 5.5%). Thus, the use of crop rotations and repeated fungicidal treatments carried out when growing potatoes does not guarantee the absence of pathogenic microorganisms in the soil, and the use of intensive watering provokes a stronger development of pathogenic microflora. New approaches to integrated potato protection are required.


Akimova, E.E., Minaeva, O.M. (2009). Vliyaniye bakteriy Pseudomonas Sp. V-6798 na fitopatologicheskoye sostoyaniye kartofelya v polevykh eksperimentakh. [Influence of bacteria Pseudomonas Sp. В-6798 on the phytopathological state of potatoes in field experiments]. Bulletin of Tomsk State University. Biology, 2 (6), 42–47 [in Russian].

Anisimov, B.V., Belov, G.L., Varitsev, Yu.A. and others (2009). Zashchita kartofelya ot bolezney, vrediteley i sornyakov [Protection of potatoes from diseases, pests and weeds]. Moscow: Potato grower, 256 [in Russian].

Beneduzi, A., Ambrosini, A., Passaglia, L.M.P. (2012). Plant-growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol., 2012, 35, 4, 1044–1051 [in English].

Bernard, E., Larkin, R.P., Tavantzis, S., Erich, M.S., Alyokhin, A., Gross, S.D. (2014). Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant. Soil., 374, 611–627 [in English].

Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., Schulze-Lefert, P. (2013). Structure and function of bacterial microbiota of plants. Annu. Rev. Plant Biol., 64, 807–838. doi: 10.1146/annurev-arplant-050312-120106 [in English].

Butsyak, A.A., Kalin, B.M. (2013). Mikroorhanizmy, yak alternatyva pestytsydam u vyrobnytstvi ekolohichno bezpechnoyi produktsiyi roslynnytstva [Microorganisms as an alternative to pesticides in the production of environmentally friendly crop products]. Scientific Bulletin of LNUVMBT named after S.Zh. Gzycki, 1 (55), 30-34 [in Ukrainian].

Djaman, K., Irmak, S., Koudahe, K., Allen, S. (2021). Irrigation management in potato (Solanum tuberosum L.) production: A review. Sustainability, 13, 1504 [in English].

Dobrovolskaya, T. G. (2002). Struktura bakterialnyih soobschestv pochv [The structure of soil bacterial communities]. Moscow: Akademkniga, 282 [in Russian].

Filippov, A.V., Kuznetsova, M.A., Rogozhin, A.N., Smetanina, T.I., Spiglazova, S.Yu. (2007). Sistemy prinyatiya resheniy o zashchite kartofelya ot fitoftoroza [Decision-making systems for protecting potatoes from late blight]. Plant protection and quarantine, 3, 54-58 [in Russian].

Finckh, M.R., Schulte-Geldermann, E., Bruns, C. (2006). Challenges to organic potato farming: Disease and nutrient management. Potato Res., 49, 27–42 [in English].

Gainatulina, V.V., Khasbiullina, O.I. (2020). Effektivnost primeneniya biopreparatov i fungitsidov v borbe s rizoktoniozom kartofelya [The effectiveness of the use of biological products and fungicides in the fight against potato rhizoctoniae]. Bulletin of the FEB RAS, 4, 93–99. doi: 10.37102/08697698.2020.212.4.015 [in Russian].

Gainatulina, V.V., Makarova, M.A. (2018). Khimicheskiye i biologicheskiye fungitsidy na zashchite kartofelya ot rizoktonioza [Chemical and biological fungicides to protect potatoes from rhizoctonia]. Far East Agrarian Vestnmk, 3, 7-12 [in Russian].

Gannibal, F.B. (2011) Monitoring alternariozov selskokhozyaystvennykh kultur i identifikatsiya gribov roda Alternaria [Monitoring of Alternaria crops and identification of fungi of the genus Alternaria]. St. Petersburg: VIZR, 71 [in Russian].

Gastal, F., Lemaire, G. (2002). N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot., 53, 789–799 [in English].

Gveroska, B. (2013). Relationships of Trichoderma spp. quantity in soil to reducing the dampingoff in tobacco seedlings. Bulg. J. Agric. Sci., 19, 666-674 [in English].

Heydari, A. and Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. Journal of Biological Sciences, 10, 273-290 [in English].

Issiakhem, F., Bouznad, Z. (2010). In vitro evaluation of difenoconazole and chlorothalonil on conidial germination and mycelial growth of Alternaria alternata and A. solani causal agent of early blight in Algeria PPO – Special Report. №14, 297–303 [in English].

Katkova, T.S. (2007). Vidovoy sostav patogennykh gribov v okulturennykh pochvakh Yemelyanovskogo rayona [Species composition of pathogenic fungi in cultivated soils of the Emelyanovsk region]. Bulletin of KrasGAU, Krasnoyar. state agrarian. un-t. Krasnoyarsk, 6, 308–311 [in Russian].

Kosolapova, A., Yamaltdinova, V., Mitrofanova, E., Fomin, D. and Teterlev, I. (2016). Biological activity of soil depending on fertilizer systems. Bulg. J. Agric. Sci., 22, 921–926 [in English].

Kots, S.Y., Malichenko, S.M., Krugova, O.D. (2001). Fizioloho-biokhimichni osoblyvosti zhyvlennya roslyn biolohichnym azotom [Physiological and biochemical features of plant nutrition with biological nitrogen]. Kyiv: Logos,271 [in Ukrainian].

Larkin, R.P., Griffin, T.S. (2007). Control of soilborne diseases of potato using Brassica green manures. Crop Prot., 26, 1067–1077 [in English].

Larkin, R.P., Halloran, J.M. (2014). Management effects of disease suppressive rotation crops on potato yields and soilborne diseases and their economic implications in potato production. Am. J. Potato Res., 91, 429–439 [in English].

Litvinov, M.A. (1969). Metody izucheniya pochvennykh mikroskopicheskikh gribov. [Methods of studying soil microscopic fungi]. Leningrad: Ed. Nauka, 121 [in Russian].

Matthiessen, J.N., Kirkegaard, J.A. (2006). Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci., 25, 235–265 [in English].

Melrose, J. (2019). The Glucosinolates: A sul phur glucoside family of mustard anti-tumour and antimicrobial phytochemicals of potential therapeutic application. Biomedicines, 7, 62 [in English].

Mosina, L.V. (2014). Vliyaniye zagryazneniya pochv tyazhelymi metallami na izmeneniye kachestvennogo sostava mikrobnykh poseleniy i obrazovaniye mikotoksinov. [Influence of soil pollution with heavy metals on the change in the qualitative composition of microbial settlements and the formation of mycotoxins]. Advances in medical mycology. Moscow: Publisher: Public National Academy of Mycology, 12, 126–128 [in Russian].

Naumov, N.A. (1937). Metody mikologicheskikh i fitopatologicheskikh issledovaniy. [Methods of mycological and phytopathological research]. Moscow, 272 [in Russian].

Plekhanova, L.P., Buldakov, S.A. (2018). Vliyaniye biologicheskikh i khimicheskikh preparatov na ustoychivost rasteniy i klubney kartofelya k boleznyam i urozhaynost [The influence of biological and chemical preparations on the resistance of potato plants and tubers to diseases and yield]. Innovative scientific achievements in the agroindustrial complex of the Far East region: theory and practice: collection of articles. scientific. tr. / FANO. SakhNIISH. Yuzhno-Sakhalinsk: Kano, 62–68 [in Russian].

Romero, A.P., Alarcón, A., Valbuena, R.I., Galeano, C.H. (2017). Physiological assessment of water stress in potato using spectral information. Front. Plant Sci., 8, 1608 [in English].

Sarwar, A., Latif, Z., Zhang, S., Zhu, J., Zechel, D.L., Bechthold, A. (2018). Biological control of potato common scab with rare isatropolone C compound produced by plant growth promoting Streptomyces A1RT. Front. Microbiol., 9, 1126 [in English].

Siryy, D. (2019). Ovochevyy praktykum «BTU-Tsentr». [Vegetable workshop “BTUCenter »]. Agribusiness Today. [in English].

Smirnov, A.N., Prikhodko, E.S., Vasilchenko, V.V., Khokhlov, V.P., Sukhorukov, A.A., Kuznetsov, S.A. (2019). Prikladnoye znacheniye opredeleniya reproduktivnogo potentsiala i agressivnosti gribnykh i psevdogribnykh patogenov kartofelya i tomata [Applied value of determining the reproductive potential and aggressiveness of fungal and pseudo-fungal pathogens of potatoes and tomatoes]. Potatoes and vegetables, 6, 23 [in Russian].

Tein B., Kauer K., Runno-Paurson E., Eremeev V., Luik A., Selge A., Loit E. The potato tuber disease occurrence as affected by conventional and organic farming systems. Am. J. Potato Res. 2015. 92, pp. 662–672 [in English].

Termorshuizen, A.J., Van Rijn, E., Van der Gaag, D.J. et al. (2006). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biol. Biochem., 38, 2461–2477 [in English].

Vdovenko, S.A. (2019). Kompleksna systema vyroshchuvannya ovochiv u vidkrytomu grunti [Complex system of growing vegetables in the open ground]. Planter, 2 (44), 54-55 [in Ukrainian].

Vdovenko, S.A. (2019). Vyroshchuvannya buryaka stolovoho za riznykh tekhnolohiy v umovakh pravoberezhnoho lisostepu Ukrayiny [Growing table beets by different technologies in the right-bank forest-steppe of Ukraine]. Vegetable and melon growing, 65, 23-31 [in Ukrainian].

Vega-Álvarez, C., Francisco, M., Soengas, P. (2021). Black rot disease decreases young Brassica oleracea plants’ biomass but has no effect in adult plants. Agronomy, 11, 569 [in English].

Zarzynska, K., Boguszewska-Mankowska, D., Nosalewicz, A. (2017). Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant. Soil Environ, 63, 159–164 [in English].

How to Cite
Anikina, I., Vdovenko, S., UlianychЕ., & Kamarova, A. (2021). CONTENT AND SPECIES COMPOSITION OF PATHOGENIC MICROMYCETES ON POTATO PLANTINGS. Vegetable and Melon Growing, (69), 55-62.