METHODS PRESEEDING PREPARATION SEEDS OF BEET ROOT

  • O. M. Mogilnay Institute of Vegetables and Melons growing of NAAS
  • O. V. Kuts Institute of Vegetables and Melons growing of NAAS
  • E. O. Dukhin Institute of Vegetables and Melons growing of NAAS
  • Yu. A. Molchanov Institute of Vegetables and Melons growing of NAAS
  • V. V. Mohylniy Institute of Vegetables and Melons growing of NAAS
Keywords: microwave radiation, seed incrustation, beet, crop quality

Abstract

The aim of the research. To develop methods of pre-sowing processing of table beet seed, to determine optimum parameters and component composition; to establish efficiency on the effect on seed quality, yield and quality of beet production. Methods. Laboratory, field, statistical. Results. Treatment of beet seed microwave field exposure of 100 seconds enhances germination energy to 47,7 %, laboratory germination – up 64,7%; by exposure 80–90 seconds – the level 42,7–43,7 % and 51,3–55,3 % respectively. Positive effect on the yield of root crops is indicated only at the exposure of 90 seconds (increase in total yield by 4,6–7,3 t/ha or 11,9–14,3 % relative to control). Using the exposure for 80 seconds led to a decrease in the productivity of the crop. The use of microwave irradiation can both suppress and intensify the biochemical and biophysical processes in plant tissues. At an exposure of 80 seconds, there is a significant increase in dry matter root crops (16,52 %), a tendency to increase the content of sugars (9,72 %); for exposure to 90 seconds – a tendency to increase the content of ascorbic acid (12,66 mg/100 g), exposure to 100 seconds - a tendency to increase the content of total sugars (10.05 %), a negative tendency to reduce the dry matter content (15,09 %) and betanine (375 mg/kg). Containing seed incrustation has a significant advantage over simple seed soaking with microfertilizer solutions and growth regulators. The use of succinic acid in intact seeds results in a significant increase in the laboratory similarity of the seeds to the background without the use of micronutrients (80,7 %), for the use of microfertilizer “Master” (85,0 %). Gumat potassium causes a positive tendency in combination with the use of micronutrient “Reakom” (79,3 %), whereas in other backgrounds there is a decrease in this indicator for the use of the indicated growth regulator. The most effective was the use of the growth regulator of succinic acid with microfertilizer “Master”, provided the growth of laboratory germin ation of seeds to 80,2 %, and the incrustation of seeds – to 85,0 %. Conclusions. The expediency of processing of beet seed with low germination (42 %) with microwave radiation with exposure of 90 seconds has been proved, which provides increase of energy of germination up to 43,7 %, laboratory germination of seeds to 55,3 %, increase of yield of root crops by 4,0 t/ha or 11,4 %, improvement of biochemical composition of products (increase of content of betanin and ascorbic acid, reduction of nitrate content). The influence of growth regulators and complex microfertilizers on the laboratory and crop seed germination after its inla ying has been analyzed. The optimal combination of components of the mixture for inlaying is determined: Semia-color dye with a rate of consumption of 10 l/t, succinic acid (0,01 %) and microfertilizer “Master” (0,025 %). The use of such a mixture results in an increase in the laboratory germination of the seeds to 85,0 %, field germination – up to 76,8 %, and has certain economic benefits (cost reduction to 684.5 UAH/t, profitability of 44%).

References

An Overview of the Vegetable Seed Industry. URL:https://www.betterseed.org/wpcontent/uploads/ASTA_VEGEflyer_Overview_0714_FINAL.pdf. [in English].

Apasheva, L.M., Lobanov, A.V. (2006). Vliyaniye fluktiruyushchego elektromagnitnogo polya na ranniye stadii razvitiya rasteniy. [The influence of the fluctuating electromagnetic field on the early stages of plant development]. Reports of the Academy of Sciences. 2006. Vol. 406. Issue 1, pp. 108–110. [in Russian].

Babenko, A.A. (1993). SVSh-impulsnaya predposevnaya obrabotka semyan [Microwave pulse pre-sowing seed]. MIISP them. Goryachkin, V., 180 p. [in Russian].

Betsky, O.V., Lebedeva, N.N. (2001). Sovremennyie predstavleniya o mekhanizmakh vozdeystviya nizkointensivnykh milimetrovykh voln na biologicheskie obyekty [Modern ideas about the mechanisms of action of low-intensity millimeter waves on biological objects]. Millimeter waves in biology and medicine. № 3, pp. 5–19. [in Russian].

Bhardwaj, R.K., Sharma A., Kumari R. (2017). Advances in Quality Seed Production of Temperate Root Vegetables. Advances in quality seed production of vegetable crops (6th to 26th September 2017). Centre of advanced faculty training in horticulture (vegetables), pp. 93–99. [in English].

Bingi, V.N. (1997). Necotoryye zakonomernosti primeneniya fizicheskikh vozdeystviy dlya aktivirovaniya prorostaniya semyan [Some patterns of the use of physical effects to activate seed germination]. Biophysics. T. 42. Vol. 2, pp. 338–341. [in Russian].

Borodin, I.F. (2008). Nanoelektrotekhnologiya v semenovodstve [Nanoelectronics in seed production]. The use of nanotechnology and nanomaterials in the AIC: coll. report. Moscow: Rosinformagrotekh, pp. 12–19. [in Russian].

Cherenkov, A.D., Kosulina, N.G. (2005). Primeneniye informatsionykh elektromagnitnyh polei v tekhnologicheskih protsessakh selskogo khozyaystva [The use of information of electromagnetic fields in technological processes of agriculture]. Svіtlotehnіka ta elektroenergetika. Vol. 5, pp. 77–80. [in Russian].

Chernai, M.A. (2014). Opredelenie biotropnykh parametrov elektromagnitnogo izlucheniya dlya predposevnoy obrabotki semyan podsolnechnika s tseliu polucheniya urozhaynosti [Determination of biotropic parameters of electromagnetic radiation for pre-sowing processing of sunflower seeds in order to increase yield]. Bulletin of Kharkiv National Technical University of Agriculture named Petr Vasilenko. Kharkiv: KhNTUSG. 153 pp. 168–169. (Series of Technical Sciences. «Problems of energy supply and energy saving in the agroindustrial complex of Ukraine»). [in Russian].

De-Souzaa, A., García, D., Sueiro, L. and Gilart, F. (2014). Improvement of the seed germination, growth and yield of onionplants by extremely low frequency nonuniform magnetic fields. Scientia Horticulturae. Vol. 176, 63–69. [in English].

Devyatkov, N.D., Golant, M.B., Tager, A.S. (1983). Rol sinkhronizatsii v vosdeystvii slabykh signalov milimetrovogo diapazona voln na zhivye organizmy. [The role of synchronization in the effect of weak millimeter-wave signals on living organisms]. Effects of non-thermal effects of millimeter radiation on biological objects. Moscow: IRE, USSR Academy of Sciences, pp. 7–17. [in Russian].

Dospekhov, B.A. (1985). Metodika polevogo opyta (s osnovami matematisheskoj obrabotki rezultatov issledovaniya) [Methods of field experience (with the basics of mathematical processing of research results)]. Moscow: Agropromizdat, 351 p. [in Russian].

DSTU 4138-2002. Nasinnia silskohospodarskykh kultur. Metodyka vyznachennia yakosti [Seeds of agricultural crops. Methods for determining quality]. [Effective as of 28.12.2002]. Ed. official. Kyiv, Derzhstandart of Ukraine, 2003, 173 p. [in Ukrainian].

Fedushko, Yu.M., Fedushko, M.P. (2014). Diya NVSh-vyprominiuvannia nyzkoi intensyvnosti na biolohichni obiekty [Effects of low-intensity microwave radiation on biological objects]. Bulletin of Kharkiv National Technical University of Agriculture named after Petr Vasilenko. Kharkiv: KhNTUSG. Vol. 154, pp. 113–115. [in Ukrainian].

Kalinin, L.G., Tuchyk, V.P., Levchenko, Ye.A., Kinderuk, M.O., Vyshnevsky, V.V. (2000). Vyznachennia vplyvu mikrokhvylovoho polia na posivni i urozhaini yakosti nasinnia zlakovykh, oliinykh i ovochevykh kultur [Determination of the influence of the microwave field on the crop and yield qualities of seeds of cereals, oilseeds and vegetable crops]. Microwave technologies in the national economy. Kiev–Odessa. Issue 2–3, pp. 66–73. [in Ukrainian].

Kilmakaev, T.A. (1991). Metody predposevnoi obrabotki semyan [Methods of seed presowing treatment]. Advances in modern biology. Vol. 111. Issue 1, pp. 134–137. [in Russian].

Kindruk, M.O., Vishnevsky, V.V., Vishnevskaya, A.M. (2001). Microkhvylova stymuliatsiia nasinnia [Microwave biostimulation of seeds]. Storage and processing of grain. Vol. 4, pp. 27–29. [in Ukrainian].

Kramarev, S.M., Krasnenkov, S.V., Artemenko, S.F. (2009). Efektyvnist peredposivnoi inkrustatsii nasinnia ozymyh ta yaryh zernovykh kultur i inokuliatsii soi v umovakh Pivnichnoho Stepu Ukrainy [Efficiency of pre-sowing incrustation of seeds of winter and spring grains and inoculation of soya in the conditions of the Northern steppes of Ukraine]. Plant physiology: problems and prospects of development. NAS of Ukraine, Institute of Plant Physiology and Genetics, Ukr. t physiologists of plants. Kyiv: Logos. Vol. 1, pp. 331–343. [in Ukrainian].

Kramarev, S.M., Krasnenkov, S.V., Artemenko, S.F. (2010). Efektyvnist peredposivnoi inkrustatsii nasinnia zernovykh kultur i inokuliatsii soi v umovakh Pivnichnoho Stepu Ukrainy [Efficiency of pre-sowing incrustation of seeds of cereals and inoculation of soya in the conditions of the northern steppe of Ukraine]. The guidebook of the Ukrainian farmer: scientific and production yearbook, 2010, pp.150–160. [in Ukrainian].

Kramarev, S.M., Pisarenko, P.V. (2007). Perspektyvy vykorystannia kopleksonativ tsynku dlya provedennia peredposivnoi inkrustatsii nasinnia kukurudzy [Prospects for the use of zinc complexonates for pre-sowing corn seed inlaying]. Bulletin of the Poltava State Agrarian Academy. 2007. Vol. 2, pp. 10–15. [in Ukrainian].

Metodyka doslidnoii spravy v ovochivnytstvi i bashtanytstvi [Methodology of experimental work in vegetable and melon]. / ed. Bondarenko, G.L., Yakovenko, K.I. Kharkiv: Osnova, 2001, 369 p. [in Ukrainian].

Microkhvylovi tekhnolohii v narodnomy hospodarstvi. Vtilennia. Problemy. Perspektyvy. [Microwave technology in the national economy. Embodiment. Problems Prospects]: Coll. sciences works / ed. Kalinin, L.G.. Kyiv–Odessa, 2002. Vol. 4, 220 p. [in Ukrainian].

Nikiforova, L.E., Bohatyryov, Yu.O. (2010). Mekhanizmy aktyvacii zhyttiediialnosti roslyn pid diieiu elektromahnitnykh vyprominiuvan nyzkoi intensyvnosti [Mechanism of activation plant life under the influence of low-intensity electromagnetic radiation[. Bulletin of Kharkiv National Technical University of Agriculture named after Petr Vasilenko. Kharkiv: KhNTUSG. Vol. 102, pp. 127–129. (Series of Technical Sciences. «Problems of energy supply and energy saving in the agroindustrial complex of Ukraine»). [in Ukrainian].

Olenyuk, A.A., Mikhailova, L.N., Moroz, A.N. (2012). Biofizicheskiy analiz deystviya elektromagnitnogo polya na informatsionnyye processy v biologicheskikh obyektakh [Biophysical analysis of the influence of the electromagnetic field on information processes in biological objects]. Bulletin of the Kharkiv National Technical University of Agriculture named after Petr Vasilenko. Vol. 130, pp. 120–123. [in Russian].

Olenyuk, A.A., Moroz, A.N. (2013). Proizvodstvennyye rezultaty predposevnoy obrabotki sakharnoy svekly informatsionnym elektromagnitnym izlucheniem [Production results of pre-sowing processing of sugar beet seeds by information electromagnetic radiation]. Bulletin of Kharkiv National Technical University of Agriculture named after Petr Vasilenko. Issue 141, pp. 145–146. [in Russian].

Pandita, V.K. (2017). Improving Planting Value of Vegetable Seeds by Physical and Physiological Methods. Advances in quality seed production of vegetable crops (6th to 26th September 2017). Centre of advanced faculty training in horticulture (vegetables), pp. 45–54. [in English].

Polevyk, N.D., Popov, V.M., Bydyanov, V.A. (2011). Vliyanie predposevnoy SVSh-obrabotki semyan golozernyh sortov yachmenya na ikh produktivnost [Influence of pre-sowing microwave processing of seed of barley sorts of barley on their productivity]. Storage and processing of grain. Vol. 9 (147), pp. 22–24. [in Russian].

Presman, A.S. (1968). Electromagnitnyye polya i zhivaya priroda [Electromagnetic fields and nature]. Moscow: Science, 256 p. [in Russian].

Rosel, H.H. (1994). Usloviya uspeshnogo khraneniya kartofelia [Conditions for successful storage of potatoes]. Achievements of science and technology of agroindustrial complex. Vol. 4–5, pp. 42–43. [in Russian].

Savchenko, V.V., Sinyavsky, O.Yu. (2014). Vplyv mahnitnoho polia na dyfuziiu molekul kysniu cherez klitynnu membranu [Influence of a magnetic field on the diffusion of oxygen molecules through a cell membrane]. Bulletin of Kharkiv National Technical University of Agriculture named after Petr Vasilenko. Kharkiv: KhNTUSG. 153, pp. 74–75 (Series of technical sciences. «Problems of energy supply and energy saving in the agroindustrial complex of Ukraine»). [in Ukrainian].

Smerdov, A.A., Volkov, S.I., Landar, A.A. (2008). Vplyv UVSh-oprominennia na intensyvnist obminykh protsesiv u nasinini [Influence of UHF irradiation on the intensity of exchange processes in the seeds]. Bulletin of the Poltava State Agrarian Academy. Vol. 2, pp. 172–174. [in Ukrainian].

Tsuglenok, N.V. (2004). Energotekhnologicheskoye prognozirovaniye [Energy technology forecasting]. Krasnoyarsk: KrasGAU Publishing House. 276 p. [in Russian].

Ustanovka dlya opredeleniya razrushaushchey dozy pri ultrafioletovom obluchenii microorganizmov [Installation for definitions destructive doze at ultraviolet irradiation microorganisms] / Smerdov, A., Aranci, S., Lapenko, T. et al. Light engineering and electronics: history, problems and prospects: materials of the III International scientific and technical conference. Ternopil, 2008, pp. 38–39. [in Russian].

Willy, K. (1975). Biologiya (Biologicheskiye protsessy i zakony) [Biology (Biological Processes and Laws)] / translated from English by Baevskaya, N.M., Lashkevich, Yu.I., Obrucheva, N.V. Moscow: Mir, 824 p. [in Russian].

Zhadin, M.N. (2007). Mechanism of Action of Weak Electromagnetic Field on ionic Currents in Aqueous Solutions of Amino Acids. Bioelectromagnetics. V. 22, pp. 27–32. [in English].

Zhulev, V.I., Ushakov, I.A. (2001). Issledovaniye electricheskikh protsessov v kletochnykh strukturakh [Research of electric processes in the cellular structures]. Biomedical electronics. Vol., pp. 30–37. [in Russian].

Published
2019-07-31
How to Cite
Mogilnay, O., Kuts, O., Dukhin, E., Molchanov, Y., & Mohylniy, V. (2019). METHODS PRESEEDING PREPARATION SEEDS OF BEET ROOT. Vegetable and Melon Growing, (65), 66-75. https://doi.org/10.32717/0131-0062-2019-65-66-75