QUALITATIVE PERFORMANCE INDICATORS OF A RIPPING-AND-SEPARATING MACHINE FOR SOIL CULTIVATION IN THE GROWTH OF SUGAR BEET

  • V. F. Pashchenko Institute of Vegetables and Melons growing of NAAS
  • Yu. N. Syromyatnikov Kharkiv national technical University of Agriculture nd. a. Petro Vasylenko
  • N. S. Khramov Mykolayiv national agrarian University
Keywords: one pass, structure, layer, the structure, experimental installation, surface, cultivation, quality, soil

Abstract

The aim of the research. Perform comparative tests soil treatment plant in production conditions with the study of quality performance indicators in the cultivation of sugar beets. Methods. Determination of the coefficient of soil texture, herbological monitoring of weeds, phenological observations. Results. Cultivating groundbreaking separating plant there is a stratification of the soil on four sublayers: over the seed, seed, under the seed and under the arable. From over the seed, sublayer completely deleted separate boulders soil more than 20 mm thick. In seed sublayer is formed most valuable in agronomic terms soil structure, the size of which does not exceed 3 times the size of the seed, density of assembly under the seed sublayer does not exceed 1.25 g/cm3. The under the arable sublayer does not have a density greater than 1.3 g/cm3 and hardness in the plow soles more than 3 MPa, which is provided with basic work. Determined that a well-known machine for optimizing agrophysical properties an arable layer of soil allows, in comparison with traditional cultivators, increase the structural factor by approximately 2.5 times. Relevance is that soil cultivation using groundbreaking separating plant will improve the methods of pre-planting of soil to improve its agrotechnical qualities, excluding such technological operations as harrowing and cultivating and to prepare the soil for sowing in one pass. Conclusions. Using the experimental groundbreaking separating plant for pre-planting soil preparation in the cultivation of sugar beets in comparison with traditional instruments by improving the quality of soil treatment allows you to get a ladder earlier in 3-4 days, to provide better preservation in the soil of moisture (3-4%), to significantly reduce the debris of crops and increase yields. In addition, research has shown that throughout the vegetative development of plants agrophysical parameters of the treated layer of soil retained relative stability.

References

Babitskiy, L.F., Kuklin, V.A. (2013). Analiz i tendentsii razvitiya orudiy dlya ekologicheskogo zemledeliya [Analysis and trends in the development of tools for ecological farming] // Naukovі pratsі Pіvdennogo fіlіalu Natsіonalnogo unіversitetu bіoresursіv і prirodokoristuvannya Ukrayini "Krimskiy agrotehnologіchniy unіversitet". Tehnіchnі nauki. Vip. 156, pp. 19–25 [in Russian].

Ghosh, B.N. et al. (2015). Conservation agriculture impact for soil conservation in maize–wheat cropping system in the Indian subHimalayas // International Soil and Water Conservation Research. Т. 3. №. 2, pp. 112–118 [in English].

Jabro, J.D. et al. (2016). Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices // Soil and Tillage Research. Т. 159, pp. 67–72 [in English].

Koller, K., El Titi A. (2003). Techniques of soil tillage // Soil tillage in agroecosystems, pp. 1-25 [in English].

Medvedev, V.V. (2011). Fizicheskie svoystva i harakter zaleganiya pluzhnoy podoshvyi v raznyih tipah pahotnyih pochv [Physical properties and nature of the plow sole in different types of arable soil] // Pochvovedenie. № 12, pp. 1487–1487 [in Russian].

Medvedev, V.V., Laktionova, T.N. (2011). Granulometricheskiy sostav pochv Ukrainyi (geneticheskiy, ekologicheskiy i agronomicheskiy aspektyi) [The granulometric composition of the soils of Ukraine (genetic, ecological and agronomical aspects)] // Kharkiv: Apostrof, pp. 292 [in Russian].

Medvedev, V.V., Plisko, I.V., Bigun, O.N.(2014). Sravnitelnaya harakteristika optimalnyih i realnyih parametrov chernozemov Ukrainy [Comparative characteristics of the optimal and real parameters of Ukraine’s black soil] // Pochvovedenie. №. 10, pp. 1247–1247 [in Russian].

Melnik, V.I. (2015). Evolyutsiya sistem zemledeliya – vzglyad v buduschee [The evolution of farming systems – a look into the future] // Zemledelie. № 1, pp. 8–12 [in Russian].

Nanka, O.V., Syromiatnykov, Yu.M. (2019). Vplyv chastoty obertannia rotora hruntoobrobnoi eksperymentalnoi ustanovky na pokaznyky yakosti [Influence of rotor speed of a soil-cultivating experimental installation on quality indicators] // Tekhnichnyi servis ahropromyslovoho, lisovoho ta transportnoho kompleksiv. №. 15, pp. 96–110 [in Ukrainian].

Nichols, V. et al. (2015). Weed dynamics and conservation agriculture principles: A review //Field Crops Research. Т. 183, pp. 56–68 [in English].

Novák, V., Hlaváčiková, H. (2019). Basic Physical Characteristics of Soils //Applied Soil Hydrology. – Springer, Cham, pp. 15-28 [in English].

Pammel, L.H, (2017). Some troublesome weeds of the mustard family // Bulletin. Т. 3. №. 34, pp. 3 [in English].

Pashchenko, V.F., Nanka, O.V., Syromiatnykov, Yu.M. (2019). Konstruktsiia nozha rotora rozrykhliuvalno-separuiuchoho prystroiu hrunoobrobnoi mashyny [The design of the rotor knife loosening-separating device tillage machines] // Inzheneriia pryrodokorystuvannia. №. 1 (11), pp. 56–68. [in Russian].

Paschenko, V.F., Syiromyatnikov, Yu.N., Hramov, N.S. (2018). Kachestvennyie pokazateli rabotyi pochvoobrabatyivayuschey mashinyi s primeneniem gibkogo rabochego organa v sistemah "organicheskogo zemledeliya" // zb. tez mіzhn. Nauk.-prakt. Konf.: «Teoretichnі і praktichnі aspekti rozvitku galuzі ovochіvnitstva v suchasnih umovah» – sel. Selektsіyne Harkіvskoуi obl.: IOB NAAN, pp. 94–100. [in Russian].

Pashchenko, V.F., Syromiatnykov, Yu.M., Khramov, M.S. (2018). Hruntoobrobna ustanovka z vykorystanniam hnuchkoho robochoho orhanu dlia kontroliu rostu bur’ianiv [Soil- cultivating installation with use of flexible working body for control of growth of weeds] // Ovochivnytstvo i bashtannytstvo. № 64, pp. 33–44 [in Ukrainian].

Paschenko, V.F., Syiromyatnikov, Yu.N., Hramov, N.S. (2018). Reshenie zadach ustoychivosti dvizheniya pritsepnyih pochvoobrabatyivayuschih mashin [Solving problems of the stability of the movement of trailed tillage machines] // Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta. № 7 (165), pp. 160–169 [in Russian].

Pinheiro, F.M. et al. (2015). Tillage systems effects on soil carbon stock and physical fractions of soil organic matter //Agricultural Systems. Т. 132, pp. 35–39 [in English].

Singh, K. et al. (2016). Tillage effects on crop yield and physicochemical properties of sodic soils //Land Degradation & Development. Т. 27. №. 2, pp. 223–230.

Shao, Y. et al. (2016). Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dryland regions of North China //European Journal of Agronomy. Т. 81, pp. 37–45 [in English].

Syiromyatnikov, Yu.N. (2018). Pokazateli kachestva rabotyi pochvoobrabatyivayuschey ryihlitelno-separiruyuschey mashinyi [Indicators of the quality of work of a soil-cultivating looseningseparating machine] // Selskohozyaystvennyie mashinyi i tehnologii. T. 12. № 3, pp. 38–44 [in Russian].

Syiromyatnikov, Yu.N. (2017). Povyishenie effektivnosti tehnologicheskogo protsessa dvizheniya pochvyi po lemehu pochvoobrabatyivayuschey ryihlitelno-separiruyuschey mashinyi [Improving the efficiency of the technological process of the movement of the soil on the plowshare of a soil-cultivating loosening and separating machine] // Selskoe hozyaystvo. № 1, pp. 48–55. DOI: 10.7256/2453-8809.2017.1.22037 [in Russian].

Syiromyatnikov, Yu.N. (2018). Rabochie organyi dlya podrezaniya i pod’ema pochvyi pochvoobrabatyivayuschey ryihlitelno-separiruyuschey mashinyi [Working bodies for cutting and lifting soil tillage loosening and separating machine] // Vestnik agrarnoy nauki Dona. № 3 (43), pp. 49–56 [in Russian].

Syiromyatnikov, Yu. N. (2018). Rezultatyi polevyih issledovaniy rotornoy pochvoobrabatyivayuschey ryihlitelno- separiruyuschey mashinyi s eksperimentalnyimi rabochimi organami [The results of field studies of rotary tillage loosening and separating machine with experimental working bodies] // Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, № 5 (163), pp.184 –193 [in Russiun].

Syiromyatnikov, Yu.N., Hramov, N.S., Voynash, S.A. (2018). Gibkiy element v sostave rabochih organov rotornoy pochvoobrabatyivayuschey ryihlitelno-separiruyuschey mashinyi [Flexible element in the composition of the working bodies of the rotary soil-cultivating ripping-separating machine] // Traktoryi i selhozmashinyi, № 5, pp. 32–40 [in Russian].

Tesfahunegn, G.B. (2015). Short-term effects of tillage practices on soil properties under Tef [Eragrostis tef (Zucc. Trotter)] crop in northern Ethiopia //Agricultural Water Management. Т. 148, pp. 241–249 [in English].

Weber, J. et al. (2017). Weed control using conventional tillage, reduced tillage, no-tillage, and cover crops in organic soybean // Agriculture. Т. 7, № 5, pp. 43 [in English].

Published
2019-07-30
How to Cite
Pashchenko, V., Syromyatnikov, Y., & Khramov, N. (2019). QUALITATIVE PERFORMANCE INDICATORS OF A RIPPING-AND-SEPARATING MACHINE FOR SOIL CULTIVATION IN THE GROWTH OF SUGAR BEET. Vegetable and Melon Growing, (65), 39-49. https://doi.org/10.32717/0131-0062-2019-65-39-49